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Abstract—Bit-loaded Orthogonal Frequency Division Mul-
tiplexing (OFDM) with convolutional coding is a powerful
technique for transmission over quasi-static frequency-selective
fading channels. Motivated by the lack of appropriate error
rate analysis techniques for this popular type of system and
channel model, we develop a novel analytical method for bit
error rate (BER) estimation of bit-loaded coded OFDM systems
operating over frequency-selective quasi-static channels with non-
ideal interleaving. To illustrate the application of the proposed
analysis, we compare the performance of a number of OFDM
bit-loading schemes applied to Multiband OFDM (MB-OFDM)
for Ultra-Wideband (UWB) radio, and to IEEE 802.11a/g systems
for wireless local area networks (WLANs). We also propose
and evaluate a hybrid loading scheme which selects the best
loading for each channel realization from amongst a number of
candidates.

I. INTRODUCTION

Multicarrier communication systems based on Orthogonal
Frequency Division Multiplexing (OFDM) have gained in-
terest from the communications community in recent years,
as evidenced by standards such as xDSL (digital subscriber
lines), IEEE 802.11a/g for Wireless Local Area Networks
(WLANs) [1], IEEE 802.16 (broadband wireless access), and
ECMA Multiband OFDM (MB-OFDM) for high-rate Ultra-
Wideband (UWB) [2]. In general, the frequency-selective
channel for these systems can be assumed to be very slowly
time-varying relative to the transmission rate of the device,
and can be approximated as quasi-static for the duration of
one or more packet transmissions.

Given the frequency-selective quasi-static conditions present
in many OFDM systems, it is beneficial to employ bit-loading
algorithms to select non-identical modulation schemes for each
OFDM subcarrier based on the channel conditions. Bit-loading
techniques can be used for either (a) increasing the total
throughput by maximizing the sum data rate, or (b) decreasing
the error probability and/or transmit power by keeping the total
rate fixed and adjusting the modulation per subcarrier in order
to take advantage of those subcarriers with the best channel
gains. In this work, we focus on the latter class of error rate
minimizing loading schemes, of which a number of different
algorithms exist [3]–[7].

In addition, most OFDM systems employ channel cod-
ing techniques such as bit-interleaved coded modulation
(BICM) [8] with convolutional codes in order to mitigate the
effects of the fading channel. Simulation-based approaches
to obtain system performance in this setting are very time
consuming due to the necessity of simulating the system over

a large number of channel realizations, thus, there is an interest
in analytical methods for evaluating the performance of bit-
loaded BICM-OFDM operating over quasi-static frequency-
selective fading channels. There are well-known techniques
for bounding the performance of convolutionally-encoded
transmission over many types of fading channels, e.g. [8],
[9]. However, such classical bit error rate (BER) analysis
techniques are not applicable to the OFDM systems mentioned
above for several reasons. Firstly, the short-length channel-
coded packet-based transmissions are non-ideally interleaved,
which results in non-zero correlation between adjacent coded
bits. Secondly, and more importantly, the quasi-static nature
limits the number of distinct channel gains to the (relatively
small) number of OFDM subcarriers. This small number
of distinct channel gains must not be approximated by the
full fading distribution for a valid performance analysis, as
would be the case in a fast-fading channel. Recent work
has developed a pairwise error probability (PEP) analysis for
loaded coded OFDM [10]. However, this analysis assumes the
use of a random interleaver, and furthermore the resultant
expressions are highly complex and are not amenable to
numerical evaluation.

In this paper, we develop a novel analysis technique for
bit-loaded coded OFDM systems (Section III), extending re-
cent results for non-loaded coded OFDM [11]. This method
provides system designers with a simple way to study the per-
formance of different bit-loading and channel coding schemes
without resorting to lengthly simulations. For illustration, we
compare the performance of a number of OFDM bit-loading
schemes applied to MB-OFDM UWB and to IEEE 802.11a/g
systems (Section IV). We also propose and evaluate a hybrid
loading scheme which selects the best loading for each channel
realization from amongst a number of candidates.

Notation: In this paper, x and X denote a vector and a
matrix, respectively, [·]T denotes vector transposition, diag(x)
denotes a matrix with the elements of x on the main diagonal,
C denotes the field of complex numbers, ⊕ denotes element-
wise XOR, and Q(·) is the Gaussian Q function [9].

II. SYSTEM MODEL

Throughout this paper we consider an N -subcarrier OFDM
system employing a general bit-loading scheme, which se-
lects a 2mi-ary QAM (2mi-QAM) modulation for subcarrier
1 ≤ i ≤ N based on the channel conditions.1 We denote

1With a slight abuse of notation, we use the term 2-QAM to denote binary
phase shift keying (BPSK).



the average number of bits per modulated symbol by m̄.
The particular loading algorithms applied will be discussed
in Section IV.

The system employs a (possibly punctured) convolutional
code of rate Rc. We assume that the transmitter selects a vector
of RcNm̄ random message bits for transmission, denoted by

b = [b1 b2 . . . bRcNm̄]T . (1)

The messages bits are convolutionally encoded by the mapping

C : {0, 1}RcNm̄ → {0, 1}Lc (2)

to produce the vector

c = C(b) (3)

of length Lc = Nm̄. The vector c is then interleaved by the
mapping

π : {0, 1}Lc → {0, 1}Lc (4)

to produce the vector

cπ = π(c) (5)

of length Lc. The interleaved bits cπ are finally modulated
using 2mi-QAM on subcarrier 1 ≤ i ≤ N , where the
modulation is represented by the mapping

Mh : {0, 1}Lc → C
N , (6)

resulting in the N modulated symbols denoted by the vector

x = [x1 x2 . . . xN ]T = Mh(cπ) . (7)

It is important to note the dependence of Mh on the
frequency-domain channel gains h = [h1 h2 . . . hN ] as a
result of the channel gain dependent loading algorithms. For
a particular h, the mapping Mh is obtained by running the
chosen loading algorithm in order to select the modulation for
each subcarrier.

We will assume that the OFDM system is designed such
that the cyclic prefix is longer than the channel impulse
response. Thus, we can equivalently consider the channel in
the frequency domain, and writing H = diag(h), we can
express the received symbols as

r =
√

EsHx + n , (8)

where n is a vector of independent complex additive white
Gaussian noise (AWGN) variables with variance N0 and Es is
the energy per modulated symbol. The energy per information
bit is Eb = Es/(Rcm̄).

We assume perfect timing and frequency synchronization.
The receiver employs a soft-output detector followed by dein-
terleaving, depuncturing, and Viterbi decoding, resulting in an
estimate

b̂ = [b̂1 b̂2 . . . b̂RcNm̄]T (9)

of the original transmitted information bits.

III. PERFORMANCE ANALYSIS

In this section, we present a method for approximating
the performance of bit-loaded coded multicarrier systems
operating over frequency-selective, quasi-static fading chan-
nels, based on approximating the performance of the system
over individual channel realizations. This method is based on
considering the set of error vectors, introduced below.

One major problem in the analysis of 2m-QAM modulation
schemes with 2m > 4 is that the probability of error for
a given bit depends on the whole transmitted symbol (i.e.,
it also depends on the other bits in the symbol). For this
reason, for the combination of convolutional coding and 2m-
QAM it is not sufficient to adopt the classical approach of
considering deviations from the all-zero codeword. In theory,
one must average over all possible choices for c. Since this is
computationally intractable, we simply assume the transmitted
information bits b (and hence x) are chosen randomly. For
4-QAM (where the joint linearity of code and modulator is
maintained) this is exactly equivalent to considering an all-
zero codeword. In the case of 2m > 4, we have verified for
the two analysis methods proposed below that the results are
practically invariant to the choice of b.

A. Set of Error Vectors

Consider a convolutional encoder initialized to the all-zero
state, where the reference (correct) codeword is the all-zero
codeword. We construct all L input sequences which cause an
immediate deviation from the all-zero state (i.e., those whose
first input bit is 1) and subsequently return the encoder to the
all-zero state with an output Hamming weight of at most wmax.
Let E be the set of all vectors e� (1 ≤ � ≤ L) representing the
output sequences (after puncturing) associated with these input
sequences, i.e., E = {e1,e2, . . . ,eL}. Let l� be the length of
e� (the number of output bits after puncturing), and let a� be
the Hamming weight of the input associated with e�. Note
that the choice of ωmax governs the value of L (i.e., once
the maximum allowed Hamming weight is set, the number of
error events L is known).

We term e� an “error vector” and E the set of error vectors.
The set E contains all the low-weight error events, which
are the most likely deviations in the trellis. As with standard
union-bound techniques for convolutional codes [9], the low-
weight terms will dominate the error probability. Hence, it
is sufficient to choose a small wmax — for example, the
punctured MB-OFDM code of rate Rc = 1/2 [2] has a free
distance of 9, and choosing wmax = 14 (resulting in a set of
L = 242 error vectors of maximum length l = 60) provides
results which are not appreciably different from those obtained
using larger wmax values.

We obtained E by modifying an algorithm for calculating
the convolutional code distance spectrum [12] in order to store
the code output sequences (i.e., the error vectors e�) in addition
to the distance spectrum information.



B. Pairwise Error Probability

We consider error events starting in a given position i of
the codeword. The set ζ of allowable starting positions i has
size |ζ| = RcLc, and each element i of ζ is an index 1 ≤
i ≤ Lc, which is code-dependent. For example, for a code
of rate Rc = 1/2 the allowable starting positions are ζ =
{1, 3, 5, . . . , Lc − 1}.

We consider each error vector e� for 1 ≤ � ≤ L, and form
the full error codeword

qi,� = [0 0 . . . 0︸ ︷︷ ︸
i−1

e�︸︷︷︸
l�

0 0 . . . 0︸ ︷︷ ︸
Lc−l�−i+1

]T (10)

of length Lc by padding e� with zeros on both sides as
indicated above. Given the error codeword qi,� and given that
codeword c is transmitted, the competing codeword is given
by

vi,� = c ⊕ qi,� . (11)

Interleaving and modulation results in the vector of QAM
symbols

zi,� = Mh(vπ
i,�) , (12)

where vπ
i,� = π(vi,�) is the interleaved version of vi,�.

The PEP for the �th error vector starting in the ith position
is then given by

PEPi,� = Q

(√
Es

2N0
||H(x − zi,�)||2

)
. (13)

C. Per-Realization Performance Analysis

In this section, we obtain an approximation of the BER
for a particular channel realization H , which we denote as
P (H). This method leads naturally to the analysis of the
outage performance, which is a useful measure for schemes
operating over quasi-static channels.

The PEP for an error vector e� ∈ E (1 ≤ � ≤ L) with the
error event starting in a position i ∈ ζ (1 ≤ i ≤ Lc) is given
by (13). The corresponding bit error rate for this event is given
by

Pi,�(H) = a� · PEPi,�(H) . (14)

Summing over all L error vectors, we obtain an approximation
of the BER for starting position i as

Pi(H) =
L∑

�=1

a� · PEPi,�(H) . (15)

We note that (15) can be seen as a standard truncated union
bound for convolutional codes (i.e., it is a sum over all error
events of Hamming weight less than ωmax). We can tighten
this bound by limiting Pi(H) to a maximum value of 1/2
before averaging over starting positions [13]. Finally, since all
allowable starting positions are equally likely, the BER P (H)
can be written as

P (H) =
1

RcLc

∑
i∈ζ

min

[
1
2
,

L∑
�=1

Pi,�(H)

]
. (16)

Table I contains pseudocode to calculate P (H) according
to (16).

TABLE I
PSEUDOCODE FOR THE ANALYSIS METHOD.

Final BER is P (for given H).
1 Run loading algorithm to obtain Mh

2 P := 0
3 for i ∈ ζ do
4 Pi := 0
5 for � := 1 to L
6 form qi,� as per (10)
7 calculate vi,� = c⊕ qi,� as per (11)
8 form vπ

i,� = π(vi,�) using mapping (4)
9 calculate zi,� = Mh(vπ

i,�) as per (12)
10 calculate Pi,� as per (14)
11 Pi := Pi + Pi,�

12 P := P + min( 1
2
,Pi)

13 P := P / (RcLc)

D. Average and Outage BER

The average BER can be obtained by averaging (16) over
a (large) number Nc of channel realizations, where the ith
channel realization is denoted by Hi (1 ≤ i ≤ Nc), as

P̄ =
1

Nc

Nc∑
i=1

P (Hi) . (17)

In the quasi-static channel setting it is also often of signif-
icant interest to obtain the outage BER performance, i.e., the
minimum expected BER performance after excluding some
percentage of the worst-performing channel realizations [14,
Section III.C-2]. We evaluate (16) for a set of Nc channel
realizations H = {Hi, 1 ≤ i ≤ Nc}. The worst-performing
X% of realizations are considered in outage, and those channel
realizations are denoted by Hout. Denoting the remaining
(100 − X)% of channel realizations by Hin, the outage BER
is given by

Pout = max
Hi∈Hin

P (Hi) . (18)

This provides information about the minimum performance
that can be expected of the system given the X% outage rate.

We note that the computational complexity of the analysis
scales linearly with L (the size of the set of error vectors)
and with Lc (the codeword length). Analysis for L ≈ 250 and
Lc = 600 takes only a few seconds per channel realization
on a modern PC, and the outage BER for a large number
channel realizations (e.g., Nc = 500) can be obtained in
the time it would take to perform simulations for only one
channel realization. Thus, the computational complexity of
the analysis is relatively low in comparison to the alternative
of performing system simulations. Finally, we note that long
packet lengths can be considered without any increase in
complexity (if they are segmented into codewords of length
Lc, as is usually the case in practical systems), since the error
rate for each codeword will be identical as a result of the
quasi-static channel conditions.

IV. RESULTS

In this section, we present numerical results illustrating the
performance analysis presented in Section III. Throughout this



section, we employ loading schemes with an average m̄ = 2
bits per subcarrier, and allow mi ∈ {0, . . . , 6} bits per subcar-
rier. We employ the following loading schemes: the Hugues-
Hartogs algorithm (HHA) [3], [4], the algorithm of Chow,
Cioffi and Bingham (CCB) [5], the Piazzo algorithm [6], and
the algorithm of Fischer and Huber [7]. Interested readers
are referred to the respective papers for the details of each
loading algorithm. We also propose a “best solution” loading
(BSL) which, for a given channel realization, is obtained by
using the analysis to calculate the error rate of each loading
algorithm mentioned above, and then selecting the loading
with the minimum BER.

We consider two practical OFDM systems: MB-OFDM [2]
and 802.11a/g [1]. We present the necessary details about each
system below.

A. MB-OFDM System and Channel Model

As the first example OFDM system, we have chosen MB-
OFDM for high data-rate UWB [2], [15]. MB-OFDM uses
128 subcarriers and operates by hopping over 3 sub-bands
(one hop per OFDM symbol) in a predetermined pattern. We
will assume that hopping pattern 1 of [2] is used (i.e., the
sub-bands are hopped in order). As a result we can consider
MB-OFDM as an equivalent 384 subcarrier OFDM system.
After disregarding pilot, guard, and other reserved subcarriers,
we have N = 300 data-carrying subcarriers.

Channel coding consists of classical bit-interleaved coded
modulation (BICM) [8] with a punctured maximum free
distance rate 1/3 constraint length 7 convolutional encoder
and a multi-stage block-based interleaver (see [2] for details).
In the standard, the interleaved coded bits are mapped to 4-
QAM symbols using Gray labeling. To maintain the same data
rates but decrease the error probability, we instead employ
the loading schemes mentioned above with m̄ = 2 bits per
subcarrier.

For a meaningful performance analysis of the MB-OFDM
proposal, we consider the channel model developed under
IEEE 802.15 for UWB systems [16]. The channel impulse
response is based on a modified Saleh-Valenzuela model. As
well, the entire impulse response undergoes an “outer” log-
normal shadowing. The channel impulse response is assumed
time invariant during the transmission period of (at least) one
packet (see [16] for a detailed description). We consider the
UWB channel parameter set referred to as CM1 [16].

B. 802.11a/g System and Channel Model

The second example system we consider is IEEE 802.11a/g,
which employs 64 subcarriers, of which N = 48 are used
for data transmission [1]. Channel coding is again BICM,
with a punctured maximum free distance rate 1/2 constraint
length 7 convolutional encoder. We adopt the quasi-static
exponentially-decaying multipath Rayleigh fading model used
in [10], [17], where the nth subcarrier gain of h is given by

hn =
Lm−1∑

i=0

h̄(i) exp
(
−j

2πni

64

)
, (19)
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10 log10(Ēb/N0) −→

10
%

O
ut

ag
e

B
E

R
−→

Piazzo, Rc = 1/2

CCB, Rc = 1/2

No Loading, Rc = 1/2

HHA, Rc = 3/4

Fischer-Huber, Rc = 3/4

Fig. 1. 10% Outage BER versus 10 log10(Ēb/N0) from analysis (lines)
and simulations (markers) for various combinations of code rates and loading
algorithms. MB-OFDM system, UWB CM1 channel.

where Lm is the number of channel taps and h̄(i) is the ith
component of the channel impulse response, modeled as a
complex Gaussian random variable [10], [17]

h̄(i) ∼ CN (0, σ0 exp(−iTs/Trms)) , (20)

where σ0 = 1 − exp(−Ts/Trms), Ts = 50 ns is the receiver
sampling rate, and Trms is the RMS delay spread of the
channel.

C. Numerical Results

In Figure 1 we plot the 10% outage BER2 versus
10 log10(Ēb/N0) from analysis (lines) as well as the corre-
sponding simulation results (markers) for various combina-
tions of code rates and loading algorithms, for MB-OFDM
over the UWB CM1 channel using a set of Nc = 100 channel
realizations. We can see that the simulation results confirm the
analysis for all considered code rates and loading algorithms,
with a maximum difference of 0.4 dB between simulation
and analysis at low BER. We note that obtaining the 10%
outage BER via simulation is very time-consuming due to
the need to simulate the system separately for each channel
realization. On the other hand, the analysis can be performed
quite quickly even for large sets of channels. As a result, we
focus exclusively on results from the analysis for the remainder
of the paper.

Figure 2 shows the 10% outage BER versus
10 log10(Ēb/N0) for all considered loading algorithms,
for the MB-OFDM system with Rc = 1/2 over the UWB
CM1 channel. We note that for this system and channel
model, decent gains of approximately 2 dB can be obtained
via loading. The Piazzo and Fischer-Huber algorithms provide
slightly reduced gains. We also note that the performance of
HHA and CCB is almost exactly the same, suggesting use

2The 10% outage BER is a common performance measure in UWB systems,
cf. e.g. [2], [15].
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loading algorithms. MB-OFDM system with Rc = 1/2, UWB CM1 channel.

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
10

−6

10
−5

10
−4

10
−3

10
−2

 

 
No Loading
HHA
Piazzo
CCB
Fischer−Huber
BSL

10 log10(Ēb/N0) −→
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of the latter due to its lower computational complexity [5].
We also note that the BSL results in additional gains over
all loading algorithms, at a cost of the increased complexity
required to perform the BER analysis for all loadings.

In order to reduce the computational complexity, we also
performed the BSL using an error vector set of L = 1,
i.e., we only included the minimum distance error event in
the analysis. The results obtained were identical to those in
Figure 2, suggesting that reduced-complexity BER estimation
with small error vector sets could be an attractive method for
loading algorithms based on coded BER, such as BSL.

In Figure 3 we plot the 10% outage BER versus
10 log10(Ēb/N0) for the various loading algorithms, for the
802.11a/g WLAN system with Rc = 1/2 and channel
Trms = 250 ns. We see gains of between 1.5 and 2 dB, with
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Fig. 4. Cumulative distribution function of loading gain G = SNRNL −
SNRLoading required for BER = 10−5 for different loading schemes (NL:
no loading). MB-OFDM system with Rc = 1/2, UWB CM1 channel.

reduced gains for the Piazzo and in particular the Fischer-
Huber algorithms. We again note that the performance of CCB
and HHA algorithms is very similar, and that the BSL can
provide additional gains over the other algorithms.

Figure 4 shows the cumulative distribution of the loading
gain G = SNRNL − SNRLoading required for BER = 10−5

for different loading schemes (NL: no loading), for the MB-
OFDM system with Rc = 1/2 over the UWB CM1 channel
(SNR � 10 log10(Ēb/N0)). Interestingly, we note that there
is a small probability that the Piazzo and Fischer-Huber
loadings will result in a performance loss (negative gains),
while the CCB, HHA, and BSL algorithms always provide
a performance gain. We again note that CCB and HHA
algorithms have similar performance. The BSL always results
in the highest loading gain. Finally, we note that gains of up
to 4 dB can be expected from loading, while gains of at least
1 dB can be expected for 50% of channel realizations.

In Table II we list the relative use of different loading
schemes for the BSL (MB-OFDM, Rc = 1/2 and Rc = 3/4,
UWB CM1 channel). Calculating the HHA loading has a high
computational complexity compared with the other algorithms,
thus, we list the relative use both including and excluding
HHA (“w/ HHA” and “w/o HHA”, respectively). We note that
for Rc = 1/2, CCB is the most-used algorithm, while for
R = 3/4 the Fischer-Huber algorithm is often the best. The
Piazzo algorithm is rarely the best loading for either code
rate. By comparing the two code rates, we can see that the
best loading algorithm is rate dependent, indicating that when
deploying coded loaded OFDM systems, some consideration
should be given to the loading-coding combination during
system design.

Finally, in Table III we list the relative use of different
loading schemes for the BSL, for the 802.11a/g system with
Rc = 1/2 and different channel RMS delay spreads Trms.
Interestingly, we note that for small Trms the best loading is



TABLE II
RELATIVE USE OF DIFFERENT LOADING SCHEMES AS BEST SOLUTION. MB-OFDM, UWB CM1 CHANNEL.

% Use (Rc = 1/2) % Use (Rc = 3/4)
Loading w/ HHA w/o HHA w/ HHA w/o HHA

No Loading 0 0 0 0
HHA [3], [4] 39 — 88 —
CCB [5] 55 75 8 33
Piazzo [6] 0 2 0 1
Fischer-Huber [7] 6 23 4 66

TABLE III
RELATIVE USE OF DIFFERENT LOADING SCHEMES AS BEST SOLUTION. 802.11A/G, Rc = 1/2, CHANNEL OF (19), (20).

% Use (Trms = 50 ns) % Use (Trms = 100 ns) % Use (Trms = 250 ns)
Loading w/ HHA w/o HHA w/ HHA w/o HHA w/ HHA w/o HHA

No Loading 91 94 68 76 17 20
HHA [3], [4] 5 — 18 — 36 —
CCB [5] 3 4 11 18 31 51
Piazzo [6] 0 0 0 1 2 3
Fischer-Huber [7] 1 2 3 5 14 26

often the same modulation for all subcarriers (no loading).
This is a result of the lack of variation in subcarrier channel
gains due to the small delay spread. As Trms increases, the
channel gains have more variation and thus there is increased
gain from loading. We also note that the best loading is more
varied for the WLAN case, indicating again that the choice
of a loading algorithm for coded OFDM systems is system-
dependent and should be carefully considered during system
design.

V. CONCLUSIONS

In this paper, we have developed a novel analytical method
for BER estimation of bit-loaded coded OFDM systems oper-
ating over frequency-selective quasi-static channels with non-
ideal interleaving. To illustrate the application of the proposed
analysis, we compared the performance of a number of OFDM
bit-loading schemes applied to MB-OFDM for UWB, and to
IEEE 802.11a/g systems for WLANs.

The results illustrate that the proposed analysis technique
provides an accurate estimation of the coded BER of loaded
OFDM systems. This allows for system performance analysis
without resorting to lengthly simulations. We have also shown
that the relative performance of bit-loading algorithms for
coded OFDM is system-dependent, and thus some care should
be given to the selection of loading algorithms for coded
OFDM systems. We have also proposed a “best solution” load-
ing algorithm which selects a loading from amongst a number
of candidates and thus guarantees the best performance, at
a cost of somewhat higher complexity when performing the
loading.
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